If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.86t^2+10t=0
a = 1.86; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·1.86·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*1.86}=\frac{-20}{3.72} =-5+1/2.6571428571429 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*1.86}=\frac{0}{3.72} =0 $
| 7x=3(3x-1)+1 | | 12=-2x+28 | | (x+14)/4=21/2 | | x(2x+9)=810 | | 5-7c=26 | | 2(t-4)+4=2(2t-6) | | P(m)=−0.4m+20 | | C=S/(1+r) | | 3/4(x-8)=7.5 | | 3(x+1)+x+3=18 | | 3x-7(4-x)=19 | | 2.x-4=22 | | 3x/2+5=8 | | 6/u=-7 | | -8=-4/w | | x(10/16)+x(3/16)=39 | | Y+4y+29y=0,y(0)=2,y(0)=1 | | x5/8+x3/16=39 | | Y+4y+29y=0 | | 2y-59=11 | | 3.7x-2.1=6.3x+5.8 | | t^2-4=45 | | x^2=x-5=0 | | 436,400+p=472,100 | | 15^7x=68 | | f(-3)=-3^2+3(-3) | | n/8 =11/5 | | 5x2-21=39 | | -5x+11=-5x+10 | | 5c=c-(c-8) | | 9x+7-6x=6x-9+x | | 10x+6x-2=30 |